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Editorial 

Semantics-enabled biomedical literature analytics 

1. Introduction 

Due to the large size and exponential growth of the number of sci-
entific articles published in the biomedical domain, obtaining the most 
relevant articles to a topic of interest, identifying reliable and scientifi-
cally sound studies, extracting salient biomedical information from 
texts, and synthesizing knowledge from different studies present sig-
nificant challenges. While traditional term-based information analysis 
and machine learning techniques can be employed for literature search, 
information extraction, and knowledge integration, such approaches 
lack an effective mechanism for analyzing scientific articles based on 
their semantics, which is often ambiguous and contextual. In the 
biomedical domain, knowledge representation and semantics-enabled 
techniques have shown the potential for systematic retrieval, curation, 
organization, and interpretation of content in ways that relates well to 
human understanding [1–5]. 

Here, we curate a special topic issue around the theme of Semantics- 
enabled Biomedical Literature Analytics. This Special Issue aims to high-
light the development of novel informatics approaches for retrieval, 
indexing, and analysis of biomedical literature, focusing on semantics- 
based techniques. We place specific attention on methods that allow 
for the construction, analysis, and integration of biomedical knowledge 
bases (KBs), with the ultimate objective of employing such KBs for 
improving search performance over biomedical literature, enhancing 
biomedical information extraction, and literature-based knowledge 
discovery. 

Biomedical text analysis, information retrieval (IR), and information 
extraction (IE), as well as biomedical KBs, ontologies, and vocabularies 
have been the topic of a number of special issues in recent years. A 
special issue in this journal [6] focused on novel approaches to collect, 
integrate, and analyze COVID-19 relevant data, which included scien-
tific publications. A Journal of the American Medical Informatics Associ-
ation (JAMIA) special issue [7] focused on the Unified Medical Language 
System (UMLS) [8], as an important source of structured biomedical 
semantics. The issue published by BMC Medical Informatics and Decision 
Making [9] is dedicated to biomedical terminologies and ontologies in 
general and their quality assurance. A special issue in ACM Transactions 
on Computing for Healthcare [10] covered techniques for natural lan-
guage processing (NLP) of biomedical text. While the current Special 
Issue is synergistic with these collections, it has a distinct focus: it is 
dedicated to covering emerging approaches and strategies for using 
biomedical knowledge representation, ontologies, and other semantic 
resources in biomedical literature search and analytics. 

We solicited submissions describing novel methodological results on 
the topics of biomedical informatics, knowledge representation/ 

ontologies, IE, NLP, artificial intelligence/machine learning, data min-
ing, and other related areas. We accepted 15 papers to be included in this 
Special Issue. 

2. Research themes 

We organize the 15 papers included as part of this Special Issue under 
the four broad themes of (i) Literature-based Discovery, (ii) Automated 
KB Construction, (iii) Knowledge-augmented Biomedical NLP, and (iv) 
Literature Search and IR. The accepted papers, organized by their pri-
mary theme, are listed in Table 1. We briefly describe each theme and 
representative papers below. 

2.1. Theme I: Literature-based discovery 

Papers on this theme incorporate structured data from KBs and 
knowledge graphs to facilitate literature-based discovery. Cuffy and 
McInnes [11] explore ways of meaningfully connecting non-interacting 
works through known biomedical concepts, while Launer-Wachs et al. 
[12] use rapidly constructed structured knowledge resources from 
literature to support hypothesis generation. Pu et al. [13] introduce a 
framework for literature-based discovery for Alzheimer’s Disease. 

Cuffy and McInnes [11] introduce a deep learning neural network- 
based approach for literature-based discovery. The objective is to 
facilitate information sharing among non-interacting literature while 
extracting potentially meaningful information. More specifically, given 
two sets of biomedical concepts, the introduced neural model finds a set 
of concepts through which the former two concepts can be found related 
to each other. 

Launer-Wachs et al. [12] describe a system for the ad-hoc con-
struction of knowledge resources in the biomedical domain and present 
three case studies in which the system was used to rapidly construct KBs 
with varying degrees of verification. Their approach relies on an 
extractive search framework. The resulting KBs are proposed as a basis 
to support hypothesis verification for literature-based discovery. The 
authors suggest that the tool can be effectively used by biomedical re-
searchers without expertise in bio-curation or NLP, and that the tool can 
support the generation of novel, plausible hypotheses, particularly using 
Swanson’s ABC model [26]. Though focused on hypothesis generation, 
this paper uses rapid automated construction of KBs to facilitate this end 
goal. 

Pu et al. [13] propose a framework for literature-based discovery 
based on graph embeddings and link prediction in the Alzheimer’s 
Disease (AD) domain. They constructed a corpus from the AD publica-
tions published between 1977 and 2021 (titles and abstracts) and 
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annotated them with AD-specific information using the Neuropsycho-
logical Integrative Ontology [27] and PubTator Central [28]. After the 
construction of the knowledge graph, time slicing was used, 20 sets of 
training and testing sets were generated, and the performance of 
different models was evaluated. Their evaluation showed that Structural 
Deep Network Embedding (SDNE) model [29] consistently out-
performed other methods and that the performance of the models 
improved significantly when the link prediction evaluation considers 
more distant future, reflecting the time required for knowledge 
accumulation. 

2.2. Theme II: Automated KB construction 

Rather than incorporating structured knowledge into language 
modeling, the papers on this theme focus on constructing KBs by 
extracting entities and relations from the biomedical literature. These 
KBs represent information in different domains such as the effect of 
gluten on health [16], nutrition and mental illness [15], and interactions 
between natural products and drugs [18]. Boguslav et al. [14] uniquely 
extract an ignorance-base, which focuses on identifying claims for which 
evidence is lacking in the literature. Lastly, while Sosa et al. [17] do not 
construct a new KB, they augment an existing protein–protein interac-
tion database with additional information mined from the literature. 

Boguslav et al. [14] extend prior work and report on the develop-
ment of a type of knowledge base referred to as ignorance-base, which 
focuses not only on representing knowledge from the literature but also 

providing additional annotations for claims that are ignorance state-
ments, for which significant science is lacking. They develop an 
ignorance-base in the prenatal nutrition field to help graduate students 
search for thesis topics related to vitamin D’s role in prenatal nutrition. 

Dang et al. [15] introduce GENA, a knowledge graph that encodes 
relationships between food, biochemicals, and mental illnesses. The 
knowledge graph (entities and their relationships) is extracted from 
abstracts of PubMed articles. This paper uses a hybrid named entity 
recognition model to extract entities and then applies a syntax-based 
relation extraction model to detect relations between entities. 

Ṕerez-Ṕerez et al. [16] describe the construction, application, and 
visualization of a KB for gluten health interactions developed from 
gluten-related literature using named entity recognition, relation 
extraction, and document classification methods followed by graph 
analysis. The authors also present case studies of applying the KB to 
analyze gluten-related health issues and the evidence on nutritional 
facts in the literature and suggest that the integration with social media 
can enable detection of gluten-related misinformation. 

Sosa et al. [17] present a knowledge graph-context association task 
and methods for associating textual context with protein–protein in-
teractions (PPIs) in KBs. The task is formulated as a classification task 
using syntactic, semantic, and discourse features. The approach is 
evaluated on highly precise silver standard corpora based on cell type or 
tissue contexts, which yields good performance, particularly for cell 
types. As a use case, they further incorporate cell type context into a 
protein–protein network for dengue fever. 

Taneja et al. [18] propose NP-KG, a knowledge graph-based frame-
work to investigate natural product-drug interactions (NPDIs). They 
construct a large-scale, heterogeneous knowledge graph from biomed-
ical ontologies, linked data, and semantic relationships extracted from 
full-text biomedical publications using SemRep [30] and INDRA-REACH 
[31]. They evaluate NP-KG by investigating pharmacokinetic NPDIs 
involving two natural products, green tea and kratom, through KG path 
searches and meta-path discovery. They identify congruent, contradic-
tory, and both congruent and contradictory information, when 
compared to manually curated ground truth knowledge. 

2.3. Theme III: Knowledge-augmented biomedical NLP 

Papers on this theme use information from a knowledge base to 
augment pre-trained language models (PLMs) [21] or improve the per-
formance on specific NLP tasks such as question answering [19,20] or 
entity linking [22]. 

Arabzadeh and Bagheri [19] explore whether general-domain PLMs 
can be adapted for biomedical domain-specific tasks without fine- 
tuning. They introduce the idea of training a classifier that selects a 
general-domain language model from among a pool of models that is 
most likely to answer a domain-specific question correctly. Experiments 
are performed on the BioASQ dataset [32], and show that the proposed 
selection strategy can improve the performance of general-purpose 
language models, making them competitive with domain-specific 
models such as PubMedBERT [33]. 

Badenes-Olmedo and Corcho [20] first construct a knowledge graph 
of evidence on drugs, diseases, genes, and proteins by extracting entities 
and relationships from CORD-19, a dataset of COVID-19 scientific arti-
cles [34]. They then introduce a question-answering tool that uses the 
developed knowledge graph in addition to general-purpose knowledge 
graphs such as Wikidata and DBpedia to answer questions from the 
SimpleQuestions dataset [35]. 

Lai et al. [21] present a new technique for incorporating structured 
background knowledge into PLMs focusing on scientific literature. The 
technique uses adapter modules, that can extend PLMs with different 
types of domain knowledge. The authors demonstrate performance 
improvements on top of SciBERT [36] and BioBERT [37] models on 
biomedical entity linking, natural language inference, and question 
answering tasks. 

Table 1 
Papers published as part of the Special Issue organized by theme.  

Theme I: Literature-based Discovery 
Cuffy and McInnes [11] Exploring a deep learning neural architecture for closed 

Literature-based discovery 
Launer-Wachs et al.  

[12] 
From centralized to ad-hoc knowledge base construction 
for hypotheses generation 

Pu et al. [13] Graph embedding-based link prediction for literature- 
based discovery in Alzheimer’s Disease  

Theme II: Automated KB Construction 
Boguslav et al. [14] Creating an ignorance-base: Exploring known unknowns 

in the scientific literature 
Dang et al. [15] GENA: A knowledge graph for nutrition and mental 

health 
Ṕerez-Ṕerez et al. [16] A novel gluten knowledge base of potential biomedical 

and health-related interactions extracted from the 
literature: Using machine learning and graph analysis 
methodologies to reconstruct the bibliome 

Sosa et al. [17] Associating biological context with protein–protein 
interactions through text mining at PubMed scale 

Taneja et al. [18] Developing a Knowledge Graph for Pharmacokinetic 
Natural Product-Drug Interactions  

Theme III: Knowledge-augmented Biomedical NLP 
Arabzadeh and Bagheri  

[19] 
A self-supervised language model selection strategy for 
biomedical question answering 

Badenes-Olmedo and 
Corcho [20] 

Lessons learned to enable question answering on 
knowledge graphs extracted from scientific publications: 
A case study on the coronavirus literature 

Lai et al. [21] KEBLM: Knowledge-Enhanced Biomedical Language 
Models 

Tsujimura et al. [22] Large-scale neural biomedical entity linking with layer 
overwriting  

Theme IV: Literature Search and IR 
Khader and Ensan [23] Learning to rank query expansion terms for COVID-19 

scholarly search 
Lokker et al. [24] Deep learning to refine the identification of high-quality 

clinical research articles from the biomedical literature: 
Performance evaluation 

Nentidis et al. [25] Large-scale investigation of weakly-supervised deep 
learning for the fine-grained semantic indexing of 
biomedical literature  
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Tsujimura et al. [22] describe a neural system for biomedical entity 
linking. The authors introduce three methodological enhancements 
compared to prior work: training data augmentation, layer overwriting, 
and a cosine similarity-based loss function. They demonstrate im-
provements on the n2c2 2019 Track 3 dataset [38], on which they 
achieve state-of-the-art results, and also provide experimental results on 
the MedMentions [39] and BioCreative VII Track 2 datasets [40], which 
shows significant improvements. 

2.4. Theme IV: Literature search and IR 

This final theme incorporates structured semantic information to 
improve biomedical search and IR. The various works categorized under 
this theme aim to improve query expansion for COVID-19 search [23], 
enhance literature screening for clinical evidence broadly [24], and 
enable semantic indexing at a finer granularity than MeSH [25]. 

Khader and Ensan [23] present CQED, a Contextual Query Expansion 
framework based on domain knowledge to retrieve relevant COVID-19 
articles. The framework first generates a set of query expansion terms 
based on domain knowledge and learns a learning-to-rank model that re- 
ranks the list of generated query expansion terms. The top-ranked terms 
are used to augment the original query when searching in PubMed. The 
authors conduct experiments on the TREC-COVID dataset [41], which 
includes queries on COVID-19 topics, demonstrating strong performance 
gains. 

Lokker et al. [24] present a deep learning-based approach to litera-
ture screening for identifying articles with high-quality, clinically rele-
vant evidence. They fine-tune several BERT variants on four annotated 
datasets and also ensemble the best-performing models on four datasets. 
A single model based on BioBERT [37] yields the best performance, 
improving specificity and maintaining high sensitivity in a prospective 
evaluation. The authors conclude that the model can increase the effi-
ciency of literature surveillance and allow for faster dissemination of 
appraised research. 

Nentidis et al. [25] propose a method for semantic indexing of 
biomedical literature at a finer granularity than that performed using 
MeSH (Medical Subject Headings) descriptors. Given the absence of 
annotated datasets, they utilize a trick in the MeSH evolution to auto-
matically create datasets where such fine-grained labels can be identi-
fied (RetroBM). They combine weak supervision, dictionary-based 
heuristics, and deep learning models to index documents with fine- 
grained labels without ground-truth data (DBM). Their experimental 
results suggest that deep learning-based weakly-supervised fine- grained 
semantic indexing is promising for fine-grained access to the biomed ical 
literature. 

3. Summary 

The collection of articles that appear in this Special Issue confirm 
several current trends. First, the use of PLMs, particularly domain- 
specific BERT variants, remains strong across various biomedical NLP 
tasks [14,17,19–25]. To some extent, these models implicitly capture 
semantic knowledge through large-scale pre-training on domain-specific 
corpora and often yield robust results. At the same time, their short-
comings in capturing nuanced domain knowledge through language 
modeling is acknowledged, motivating work that aims to incorporate 
semantic knowledge into PLMs explicitly to improve model performance 
on NLP tasks, using mechanisms such as adapters [21]. Knowledge 
fusion approaches show promise, given that biomedical domain is 
particularly rich in such structured knowledge. 

Second, we observe that for practical applications of biomedical 
literature analysis, established tools and resources that provide 
biomedical semantic knowledge continue to be commonly used 
[13,16,18,25]. In addition, many systems use biomedical ontologies, 
and KBs, such as UMLS [8], MeSH, ChEBI [42]. In many cases, re-
searchers incorporate multiple tools or ontologies into a single system. 

Table 2 
PLMs, biomedical KBs and tools used by the studies in this issue.  

Reference PLMs KBs Tools 

Cuffy and 
McInnes  
[11] 

– MeSH, CHEBI [42], 
NCBI Taxonomy [43], 
NCBI Gene [44] 

PubTator [28] 

Launer- 
Wachs 
et al.  
[12] 

– Any biomedical 
ontology 

scispaCy [45], 
SPIKE [46] 

Pu et al.  
[13] 

– Neuropsychological 
Integrative Ontology  
[27] 

PubTator [28], 
ConceptMapper  
[47] 

Boguslav 
et al.  
[14] 

BERT [48], 
BioBERT [37] 

CHEBI [42], NCBI 
Taxonomy [43], Cell 
Ontology [49], Gene 
Ontology [50], 
Protein Ontology  
[51], Sequence 
Ontology [52], Uber- 
anatomy ontology  
[53] 

PheKnowLator  
[54], DAVID [55] 

Dang et al.  
[15] 

– CHEBI [42], Protein 
Ontology [51], DOID  
[56], Symptom 
Ontology [56], FMA  
[57], APADISORDERS 
[58], ASDTTO [59], 
FoodON [60] 

scispaCyBC5CDR  

[45], PASMED  
[61], neo4j 

Ṕerez-Ṕerez 
et al.  
[16] 

– MeSH, CHEBI [42], 
Symptom Ontology  
[56], FMA [57], 
FoodON [60], UniProt 
[62], Disease Ontology 
[63], KEGG [64], 
PharmGKB [65], 
DrugBank [66], NCI 
Thesaurus [67] 

TMCHEM [68], 
LINNAEUS [69], 
DNORM [70], 
ABNER [71], 
OSCAR4 [72], 
jQuery, AmCharts, 
Angular.js, 
Cytoscape 

Sosa et al.  
[17] 

BioBERT [37], 
PubMedBERT [33] 

MeSH PubTator [28], 
GNormPlus [73], 
spaCy 

Taneja et al. 
[18] 

– CHEBI [42], Cell 
Ontology [49], Gene 
Ontology [50], 
Protein Ontology  
[51], Sequence 
Ontology [52], Uber- 
anatomy Ontology  
[53], Mondo Disease 
Ontology [74], 
Human Phenotype 
Ontology [75], 
Pathway Ontology  
[76], Cell Line 
Ontology [77] 

SemRep [30], 
INDRA-REACH  
[31], 
PheKnowLator  
[50] 

Arabzadeh 
and 
Bagheri  
[19] 

BERT [48], 
DistilBERT [78], 
RoBERTa [79], 
DistilRoBERTa, 
BioClinicalBERT  
[80], BioBERT  
[37], 
PubMedBERT [33] 

– – 

Badenes- 
Olmedo 
and 
Corcho  
[20] 

BioBERT [37] MeSH, CHEBI [42], 
Gene Ontology [50], 
Protein Ontology  
[51], Human Disease 
Ontology [81], ICD-10 
[82], PubChem [83], 
Anatomical 
Therapeutical 
Chemical 
Classification [84], 
OGC [85] 

BioNER + BioNEN 
[86] 

Lai et al.  
[21] 

BioBERT [37], 
SciBERT. [87] 

UMLS [8], PubChem  
[83], MSI [88] 

– 

(continued on next page) 
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The tools and ontologies facilitate rapid application development and 
may mitigate the need for annotation; thus, we expect that they will 
continue to serve the research community in a wide range of analytics 
tasks, despite some shortcomings like accuracy and coverage, and the 
often non-trivial task of integrating these resources. Table 2 shows a 
complete overview of the use of PLMs, biomedical KB, ontologies, and 
tools across all accepted papers. 

The submission deadline of the Special Issue more or less coincided 
with the release of ChatGPT by OpenAI and the unprecedented popu-
larity of generative large language models (LLMs) trained using autor-
egressive language modeling [92–94]. While we received a couple of 
submissions that used such models, these were ultimately not accepted 
for this Special Issue. However, we note the increasing interest in using 
generative LLMs for in-context learning for many biomedical literature 
mining tasks [95,96]. Thus far, there is conflicting evidence on the 
effectiveness of such models on biomedical literature mining and IE 
tasks; some studies report that these models underperform fine-tuning 
[96,97], while others report competitive results [98]. At the same 
time, combining techniques such as fine-tuning open-source LLMs (e.g., 
Flan-T5 [99]) and chain-of-thought prompting [100] yields state-of-the- 
art performance on some datasets [101]. We anticipate that research on 
using generative LLMs for biomedical literature analysis will continue to 
make strides in the foreseeable future, including for the areas covered in 
this Special Issue. In fact, recently published work has demonstrated the 
promise of generative LLMs for literature-based discovery and KB con-
struction (albeit in other scientific domains), while also pointing out 
their limited effectiveness compared to fine-tuned models for these tasks 
[102,103]. A natural direction could be to extend these methods to 
biomedical literature analysis tasks and to enhance their effectiveness by 
leveraging methods such as retrieval-augmented generation (RAG) 
[104,105]. 

Given their current tendency to hallucinate [106], it remains to be 
seen whether/when LLMs can fully substitute more robust and 
explainable methods in the near future. In this regard, we anticipate that 
combining LLMs with structured semantic knowledge (i.e., neuro- 
symbolic AI [107]) can be synergistic; hallucinations can be reduced 
or prevented by grounding LLM output in explicit knowledge, while 
LLMs can be used to address the problems of coverage and completeness 
that often diminish the utility of curated semantic resources [108]. 
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Ensan  
[23] 

BERT [48], 
UmlsBERT [89] 

UMLS [8] spaCy, scispaCy  
[45] 

Lokker et al. 
[24] 

BERT [48], 
BioBERT [37], 
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PubMedBERT [33] 

– – 

Nentidis 
et al.  
[25] 

PubMedBERT [33] MeSH MetaMap [91]  
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