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Abstract

Optimizing antibiotic dosing recommendations
is a vital aspect of antimicrobial stewardship
(AMS) programs aimed at combating antimi-
crobial resistance (AMR), a significant pub-
lic health concern, where inappropriate dosing
contributes to the selection of AMR pathogens.
A key challenge is the extraction of dosing in-
formation, which is embedded in free-text clin-
ical records and necessitates numerical trans-
formations. This paper assesses the utility of
Large Language Models (LLMs) in extracting
essential prescription attributes such as dose,
duration, active ingredient, and indication. We
evaluate methods to optimize LLMs on this
task against a baseline BERT-based ensemble
model. Our findings reveal that LLMs can
achieve exceptional accuracy by combining
probabilistic predictions with deterministic cal-
culations, enforced through functional prompt-
ing, to ensure data types and execute necessary
arithmetic. This research demonstrates new
prospects for automating aspects of AMS when
no training data is available.

1 Introduction
Antimicrobial resistance (AMR) has become a ma-
jor public health concern, as antimicrobials are
steadily losing their effectiveness in combating
bacterial infections (O’Neill, 2016). AMR is not
limited to human medicine; it is also a growing
issue among animals (Ekakoro et al., 2022; Cum-
mings et al., 2015), who can acquire and transmit
multidrug-resistant pathogens to humans (Guard-
abassi et al., 2004). Antimicrobial Stewardship
(AMS), which has demonstrated effectiveness in
improving antimicrobial use in both human and
animal healthcare (Davey et al., 2017; Hardefeldt
et al., 2022), aims to optimize antimicrobial use to
curtail the development and spread of AMR. Ac-
curate dosing is part of this strategy, as overdosing
can lead to toxicity and under-dosing can be partic-

Clinical Note Inputs

Consultation Note:
History: Realised on Saturday that there was a wound
on left fore leg...
Examination: Not limping in consult room...1cm wound
that has been filled with granulation tissue. Swelling
approx 0.5cm
Assessment: Wound over left fore limb...
Plan: Recheck in a week.

Prescription Label Information:
Item Label: Dog 14.00 x Amoxyclav Tabs 250Mg Give
half tablet twice a day
Item Name: Amoxyclav Tabs 250Mg (100)
Weight: 10kgs
Units Dispensed: 14.0

Inferred Labels for Evaluation

Ingredient: Amoxicillin Clavulanate
Indication: Traumatic Injury
Frequency: 2 (daily doses)
Medication Size: 250 (mgs)
Dose Unit Size: 0.5 (tablets per dose)
Duration: 14 (days)
Dose: 12.5 (mg/kg)

Figure 1: Example of consultation and prescription note
along with inferred labels.

ularly perilous as it can select for AMR organisms
and lead to poor therapeutic outcomes (Roe et al.,
2012; Grill and Maganti, 2011). A pragmatic way
to improve dosing accuracy and optimizing antimi-
crobial use is through decision support systems in
clinical settings (Hardefeldt et al., 2018b,a), where
targeted dosing recommendations can be made in
real-time.

Recent developments in Large Language Mod-
els (LLMs) introduce compelling opportunities for
automated information extraction and decision sup-
port (Bubeck et al., 2023; Nori et al., 2023), as
these models obviate the need for extensive labeled
data (Brown et al., 2020). Such models can poten-
tially furnish clinicians with data-driven counsel
on optimal antimicrobial selection, treatment du-



ration, and dosing intervals, tasks that have been
historically reliant on extensive labor-intensive la-
beled data compilation (Uzuner et al., 2010; Tao
et al., 2017). To realize the potential for LLMs
for extracting prescription elements, an essential
step is empirical assessment of their ability to ac-
curately extract relevant information from clinical
text. Given the idiosyncratic nature of LLM train-
ing, which leverages instruction tuning rather than
conventional training paradigms, it becomes vital
to also scrutinize configuration variances for per-
formance optimization (Zheng et al., 2023). Ad-
ditionally, while the task of extracting elements
out of prescriptions was explored in shared tasks
such as the 2010 i2b2 challenge (Uzuner et al.,
2011), these studies only evaluate the ability to
extract text spans without performing numerical
conversion. Converting text spans to numerical
representations and performing necessary calcula-
tions to understand the dose and duration of a given
medication are also essential to optimize antimi-
crobial use. Studies performing such numerical
conversions rely on rules-based methods which are
notoriously brittle, and only one study we identi-
fied made the corresponding algorithm available
(Karystianis et al., 2016).

We leverage the VetCompass Australia (Mc-
Greevy et al., 2017) corpus, which comprises over
50 million clinical notes from over 200 veterinary
clinics across Australia, as our primary data source.
Our goal is to extract key information such as the
active ingredient, the indication for antimicrobial
use, and the dose and duration of the therapy. We
assess the performance of LLMs in zero-shot and
few-shot learning scenarios for extracting this criti-
cal information. By exploring the feasibility of ap-
plying LLMs to the VetCompass dataset, we seek
to understand their potential in aiding dosing rec-
ommendations to support AMS. Specifically:

• We construct a veterinarian-labeled evaluation
dataset of 200 clinical notes to study medication
dosage extraction from veterinary notes;

• Using silver labels generated by a baseline BERT-
based ensemble model to provide training exam-
ples, we benchmark the performance of LLMs
against the baseline model for extracting medi-
cation dosage information, their indications, and
active ingredients;

• While we demonstrate LLMs’ proficiency in el-
ement extraction for dose and duration calcula-
tions, they falter at arithmetic operations crucial

for deriving these elements (Yuan et al., 2023).
We introduce methods to overcome this using
functional prompting to combine the probabilis-
tic predictions from the LLMs with determinis-
tic calculations for labelling dosing elements in
zero- or few-shot settings.1

2 Task & Dataset

We investigate the task of dose information extrac-
tion from veterinary clinical notes. Given textual
clinical notes, the task is to extract seven labels, in-
cluding five entity labels: active ingredient, clinical
indication, frequency, medication size, and dosage
unit size, along with two derived labels: dose and
duration. A sample clinical note, prescription label,
and the inferred target labels are illustrated in Fig-
ure 1. Prescription label information is provided
as an input for all extractions except indication, for
reasons of document length. For indication, the
model is also given the set of potential indications;
for ingredient, the set of potential ingredients. We
evaluate accuracy based on exact match between
the output label and the ground truth label.

Data Extraction and Label Creation We assem-
ble a subset of 1500 clinical records sourced from
VetCompass Australia (McGreevy et al., 2017),
focusing on cases where patients received oral
antimicrobial treatments as outlined in Hur et al.
(2019). To facilitate further calculations, the pa-
tient’s weight in kilograms and the total quantity
of medication dispensed are also extracted from
structured textual fields within the clinical records
(Appendix Table 3). We extract the inferred la-
bel elements shown in Figure 1 using RxVetBERT,
an ensemble model introduced in prior work (Hur
et al., 2020, 2022); these inferred labels are used as
silver labels for in-context learning examples. The
extracted records and labels are partitioned into
1000 records for training, 300 for development,
and 200 for test. The test set is reserved exclusively
for the final evaluation stage after all prompts have
been refined and optimized.

Gold Test Set Annotations To ensure label accu-
racy in the test set, two expert veterinarians manu-
ally annotated the data. Inter-annotator agreement
was evaluated using exact match F1 scores. Initial
IAA F1 was 0.8 for Indication, 0.985 for Dose, and

1The code and select models used in this study available at
https://github.com/havocy28/prescription-text-analyzer

https://github.com/havocy28/prescription-text-analyzer


1.0 for Duration, Ingredient, Medication Unit Size
and Dose Unit Size. High agreement in dosage
and ingredient categories was due to their objectiv-
ity. Consensus on indication is more challenging,
particularly when multiple clinical events compli-
cated interpretation—e.g., in scenarios involving
post-operative complications following traumatic
injury, the indication could be correctly interpreted
as either the initial injury or subsequent complica-
tions. Any annotation discrepancies were resolved
through consensus discussion.

Indication and Ingredient Labels Indication la-
bels are based on a subset of Veterinary Nomen-
clature (VeNOM) codes, a specialized adaptation
of SNOMED for veterinary medicine (Brodbelt,
2019). We use the subset of 52 curated by (O’Neill
et al., 2019), of which 23 appear in our test set.
Ingredient labels are based on unique antimicro-
bial agents from VetCompass, which consist of 49
unique ingredients, 9 of which occur in our test set.

Dosing Elements Frequency indicates the
amount of times per day a dose is given. It must be
a numerical value such that it can be used in dosing
calculations (e.g., ‘twice daily’ is converted to 2).
Dose unit size indicates the amount of medication
and must also be converted into a numerical value
(e.g., ‘half of a tablet’ is converted to 0.5).

The medication dose and duration can then be
calculated using the formulae:

Dose =
D ×M

W
Duration =

T

F ×D

where D is the Dose Unit Size (number of tablets
or volume of liquid), M the Medication Size (tablet
size [in mg]), W the Weight of Patient (in kg), T
the Total Units Dispensed, and F the Administra-
tion Frequency. The dose calculation is designed to
tailor the medication dose to the individual’s mass
to achieve the optimal therapeutic efficacy while
minimizing the risk of toxicity. This is particu-
larly important for veterinary and pediatric patients,
where the difference in mass between patients can
vary greatly (Waldman et al., 2008).

3 Methodology
We benchmark three LLMs on this task: GPT-3.5
(Brown et al., 2020), GPT-4 (OpenAI, 2023a),
and LLAMA2-70B (Touvron et al., 2023), against
the baseline ensemble model (RxVetBERT), which
combines rule-based methods and VetBERT as de-
scribed in previous works (Hur et al., 2020, 2022).

Prompt Settings We compare the following:

Zero-shot: Utilizes text from the clinical note
and/or prescription label, along with the item name,
weight of the patient, and the number of units dis-
pensed as input. A prompt for the element being
classified is included. No examples are provided.

Few-shot Random Examples: Incorporates
randomly-sampled example prescriptions or exam-
ination text and inferred labels from the training
set as in-context examples (Brown et al., 2020).
To manage token limits, we include three labeled
examples for prescription prompts and two for in-
dication prompts—the examination text required
for the indication prompt were much longer.

Few-shot Similar Examples: Instead of random
examples, we use text similarity as a selection cri-
terion to retrieve examples for in-context learning
(Zhang et al., 2023; Shi et al., 2023; Lewis et al.,
2021). For the retriever, we employ a distilled
SBERT model (Wang et al., 2020) to encode text
and retrieve examples based on cosine similarity.

Functional Prompting: In the zero-shot setting,
we leverage functional prompting (OpenAI, 2023b)
with GPT-3.5 and GPT-4 to combine probabilis-
tic outputs with rule-based calculations, enforcing
data types for extracted prescription attributes and
executing formulaic calculations for Dose and Du-
ration, as detailed in §2. We compare these results
with LLAMA2-70B’s configurations for extracting
dose unit size and frequency. Additionally, we fine-
tune a VetBERT model (Hur et al., 2020) with silver
label data to isolate these attributes, and perform
deterministic calculations for dose and duration.

Prompt Tuning To improve the performance of
calculating the dose and duration of therapy, we
include the formulas for the dose and duration cal-
culations as part of the prompt. The prompts used
for evaluation were additionally optimized using
the framework proposed by Yang et al. (2023) to
iteratively generate a set of prompts using GPT-4,
test those prompts on a subset of records from the
training set until no improvements were observed
after multiple iterations, and keep the prompt with
highest accuracy for each element. Final prompts
can be found in Appendix A.2.

Postprocessing We remove non-numerical text and
retain the first float in the model’s output for en-
hanced accuracy, except for indication and ingredi-
ent which are expected to be strings.



Ingredient Indication Dose Duration Frequency Dose Unit Size
RxVetBERT 100 80.0 89.1 88.0 97.0 89.0

Few-Shot Similar Examples
GPT-3.5 97.5 56.5 29.5 70.0 98.0 98.0
GPT-4 99.5 75.0 85.0 91.0 98.5 99.5
LLAMA2-70B 94.0 9.0 12.5 58.0 97.5 95.5

Few-Shot Random Examples
GPT-3.5 67.0 73.5 26.0 61.0 98.5 97.0
GPT-4 100 73.5 88.5 84.5 98.5 100
LLAMA2-70B 42.0 27.5 9.5 61.0 97.5 92.5

Zero-Shot
GPT-3.5 80.5 35.0 3.5 52.5 12.0 21.0
GPT-4 97.5 69.5 24.0 75.5 97.5 55.0
LLAMA2-70B 21.0 0.0 5.0 57.5 98.0 59.5

Table 1: Model accuracy (%) across multiple settings, benchmarked against RxVetBERT.

Dose Duration Freq. Dose Unit
Size

Finetuned
VetBERT 90.0 88.0 97.0 90.5

Few-Shot Similar Examples
LLAMA2-70B 95.5 93.5 97.5 95.5

Zero-Shot
GPT-3.5 94.5 92.5 98.0 98.0
GPT-4 99.5 98.0 98.5 99.5

Table 2: Evaluation of GPT-3.5 and GPT-4 in a zero-
shot setting using functional prompts to enforce numeri-
cal data types, compared to VetBERT trained on silver
labels and LLAMA2-70B in the Few-Shot Similar setting.
Dose and Duration are computed deterministically for
all model variants.

4 Results and Discussion
Overall, our experiments find that LLMs are highly
effective at extracting and interpreting numerical
elements (e.g., Frequency and Dose Unit Size)
necessary to calculate the dose and duration (Ta-
ble 1). GPT-3.5 and GPT-4 show high accuracy
in the zero-shot setting and LLAMA2-70B using in-
context learning examples. For all models, inte-
grating probabilistic outputs with deterministic cal-
culations through functional prompting achieves
much higher accuracy for dose and duration values
compared to directly prompting models for these
values (Table 2). Functional prompting provides
an effective way to ensure more reliable outcomes
in tasks requiring numerical computations when
those computations can be explicitly described.

The much smaller finetuned VetBERT achieves
modest results, similar to silver label accuracy for
dose unit size and frequency of administration,

which suggests it could achieve higher accuracy
with more accurate training labels. For active in-
gredient, we find LLMs to be highly effective with
appropriate prompt tuning. Error analysis of ini-
tial results found that there were many errors for
multi-ingredient medications, e.g., Amoxycillin
Clavulanate incorrectly identified as Amoxycillin.
Through prompt tuning, we identified the most ef-
fective way to overcome this as including the fol-
lowing prompt text: “focus on the active ingredi-
ents and note them all if they were present.”

Nonetheless, accurately pinpointing the primary
indication for antimicrobial administration contin-
ues to be a challenging task, as evidenced by the
lower inter-annotator agreement score for indica-
tions as discussed in §2, and the relatively poor
performance of LLMs on this subtask. A closer
examination of the errors reveals that they largely
occurred in instances where the indication is am-
biguous, similar to the complications noted earlier.
Refining the labeling schema for indications is a
promising avenue for mitigating this issue.

Conclusion This paper provides a framework for
LLMs to extract essential prescription data from
veterinary text, such as dose, duration, and active
ingredients for supporting AMS efforts. We over-
come limitations in calculating elements such as
dose and duration by integrating probabilistic out-
puts with deterministic calculations through func-
tional prompting, even in zero-shot settings. Future
work should consider evaluation for human clinical
applications, given the potential contributions of
this approach to broader healthcare.



Limitations

The efficacy of in-context learning for models in the
few-shot similar setting may be constrained by the
precision of RxVetBERT, which was employed to
furnish the examples used in the prompts. Random
sampling was used to create a test set mirroring the
full dataset population; this limited the diversity of
specific disease syndromes in the test data, and may
not provide a complete assessment of the models’
capabilities.

LLMs are still prone to errors, even though
they demonstrate high performance on evaluation
datasets. When using an LLM for clinical deci-
sions, it is critical that the final decisions involve
clinicians as LLMs in their current state may still
fall short. While our framework excels in identi-
fying active ingredients, it faces challenges in as-
certaining exact indications for medication, a more
subjective task, signaling a potential direction for
future work.
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A Appendix

A.1 Prompt Design Details

This section details the prompt template used and
provides an example prompt. Each initial prompt
was generated using GPT-4 by prompting the model
to generate 10 additional prompts for accomplish-
ing the task. Each task was tested using GPT-3.5
and the process was repeated until the additional
prompts were no longer improving the performance
after 3 successive iterations. For dose and duration,
which also required the steps for performing arith-
metic, the formula for the necessary arithmetic was
provided.

The prompt templates were designed as follows:
{PROMPT}

{Examples} (omitted in zero-shot settings)

{Instance to label}

Here is an example prompt for dose under the
few-shot random setting:

Output the dosage in mg/kg. Dose is determined
by multiplying the total dose units given per
administration multiplied by the size of the
medication in mg, dividing by the weight of the
patient in kg to determine the mg per kg

** Example:
** Item Label: Disp By: ***: Dog 21.00 x Clinacin

Tabs 150Mg One \& half (1.5) tablets twice a
day with food ***

** Item Name: Clinacin Tabs 150Mg (100) Clindamycin
** Weight: 30kgs
** Medication Unit Size: 150.0

** Units Dispensed: 21.0
** Dose: 7.5

** Example:
** Item Label: PM:Disp:***: Cat 7.00 x Baytril 50Mg

Tab Half (1/2) tablet once a day Give until
finished. ***

** Item Name: Baytril 50Mg Tab (100) (enrofloxacin)
** Weight: 5kgs
** Medication Unit Size: 50.0
** Units Dispensed: 7.0
** Dose: 5

** Example:
** Item Label: Vet: ***: *** : Dog 10.00 x Veraflox

Dog 60mg Give ONE (1) tablet ONCE a day Give
until finished; ***

** Item Name: Veraflox Dog 60mg (70) (pradofloxacin)
** Weight: 30kgs
** Medication Unit Size: 60.0
** Units Dispensed: 10.0
** Dose: 2

** Instance to Label:
** Item Label: Vet: ***: Dog 10.00 x Clavulox Tabs

500Mg One (1) tablet twice a day Give until
finished. with food ***

** Item Name: Clavulox (Clavulanic Acid) Tabs 500Mg
(100) **\\ Weight: 29kgs

** Medication Unit Size: 500.0
** Units Dispensed: 10.0
** Dose:

A.2 Prompts Used

This section details the example prompts used for
each label in the task.

• Active Ingredient: “Referencing the trade
name, choose the active ingredient from the In-
gredients List that forms the medication. For
combination drugs, ensure to select the ingre-
dient with all components.”

• Clinical Indication: “Using the provided list
of possible indications, give the most likely
indication for the antimicrobial administration.
If unclear from the text, label as unknown.”

• Frequency: “How many times per day is the
medication given?”

• Medication Size: “What is the medication
unit size in mg?”

• Dosage Unit Size: “How many units of the
medication are given per dose?”

• Overall Dose: “Output the dosage in mg/kg.
Dose is determined by multiplying the total
dose units given per administration multiplied
by the size of the tablet in mg, dividing by the
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RxVetBERT 100 80.0 89.1 88.0 97.0 89.0 - - -

Few-Shot Similar Examples
GPT-3.5 97.5 56.5 29.5 70.0 98.0 98.0 90.5 100 100
GPT-4 99.5 75.0 85.0 91.0 98.5 99.5 100 99.5 100
LLAMA2-70B 94.0 9.0 12.5 58.0 97.5 95.5 100 100 100

Few-Shot Random Examples
GPT-3.5 67.0 73.5 26.0 61.0 98.5 97.0 99.5 100 100
GPT-4 100 73.5 88.5 84.5 98.5 100 100 99.5 100
LLAMA2-70B 42.0 27.5 9.5 61.0 97.5 92.5 100 100 100

Zero-Shot
GPT-3.5 80.5 35.0 3.5 52.5 12.0 21.0 69.5 94 100
GPT-4 97.5 69.5 24.0 75.5 97.5 55.0 98.5 100 100
LLAMA2-70B 21.0 0.0 5.0 57.5 98.0 59.5 92.0 99.5 100

Table 3: Accuracy (%) of Large Language Models (LLMs) across multiple settings for all prescription elements,
benchmarked against the RxVetBERT baseline ensemble methods.

weight of the patient in kg to determine the
mg per kg.”

• Treatment Duration: “Calculate the length
of administration (in days) for the given pre-
scription. To determine the length of admin-
istration, find the total number of tablets or
doses dispensed and divide by the number of
doses given per day.”

A.3 Additional Evaluations

While evaluations were performed on all aspects of
the prescription text, we omitted the performance
of the elements which could be extracted directly
out of the text, which were required for the dose
calculations but did not require any conversion into
numerical values, this included the Weight, Total
Units, or Medication Size. We have included this
in Table 3.
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