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Abstract

While there has been significant development
of models for Plain Language Summarization
(PLS), evaluation remains a challenge. PLS
lacks a dedicated assessment metric, and the
suitability of text generation evaluation metrics
is unclear due to the unique transformations in-
volved (e.g., adding background explanations,
removing jargon). To address these questions,
our study introduces a granular meta-evaluation
testbed, APPLS, designed to evaluate metrics
for PLS. We identify four PLS criteria from pre-
vious work—informativeness, simplification,
coherence, and faithfulness—and define a set
of perturbations corresponding to these criteria
that sensitive metrics should be able to detect.
We apply these perturbations to the texts of two
PLS datasets to create our testbed. Using AP-
PLS, we assess performance of 14 metrics, in-
cluding automated scores, lexical features, and
LLM prompt-based evaluations. Our analysis
reveals that while some current metrics show
sensitivity to specific criteria, no single method
captures all four criteria simultaneously. We
therefore recommend a suite of automated met-
rics be used to capture PLS quality along all
relevant criteria. This work contributes the first
meta-evaluation testbed for PLS and a compre-
hensive evaluation of existing metrics.1

1 Introduction

Plain language summaries of scientific informa-
tion are important to make science more accessible
(Kuehne and Olden, 2015; Stoll et al., 2022) and
inform public decision-making (Holmes-Rovner
et al., 2005; Pattisapu et al., 2020). Recently, gen-
erative models have made gains in translating sci-
entific information into plain language approach-
able to lay audiences (August et al., 2023; Gold-
sack et al., 2023; Devaraj et al., 2021). Despite

*Work performed while at University of Washington.
1APPLS and our evaluation code can be found at

https://github.com/LinguisticAnomalies/APPLS.
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Figure 1: We present APPLS, the first granular testbed
for analyzing evaluation metric performance for plain
language summarization (PLS). We assess performance
of 14 existing metrics, including automated scores, lexi-
cal features, and LLM prompt-based evaluations.

these gains, the field has not reached consensus
on effective automated evaluation metrics for plain
language summarization (PLS) (Luo et al., 2022;
Ondov et al., 2022) due to the multifaceted nature
of the PLS task. Removal of unnecessary details
(Pitcher et al., 2022), adding relevant background
explanations (Guo et al., 2021), jargon interpreta-
tion (Pitcher et al., 2022), and text simplification
(Devaraj et al., 2021) are all involved in PLS, pos-
ing challenges for comprehensive evaluation.

Our goal is to assess how well existing metrics
capture the multiple criteria of PLS. We identify
four criteria, informed by prior work (Pitcher et al.,
2022; Ondov et al., 2022; Stoll et al., 2022; Jain
et al., 2022), that a PLS metric should be sensitive
to: informativeness, simplification, coherence, and
faithfulness. We introduce a set of perturbations
to probe metric sensitivity to these criteria, where
each perturbation is designed to affect a single cri-
terion with ideally minimal impact to others.2 By

2We acknowledge that introducing any change in text likely
affects multiple criteria, though we design our perturbations
carefully to try and minimize these impacts.

https://github.com/LinguisticAnomalies/APPLS


incrementally introducing perturbations to the texts
of two scientific PLS datasets, CELLS (Guo et al.,
2024) and PLABA (Attal et al., 2023), we create
our meta-evaluation testbed APPLS.

We analyze 14 metrics using APPLS, including
the most widely used metrics in text simplifica-
tion and summmarization literature, and recently-
proposed prompt-based methods (Gao et al., 2023;
Luo et al., 2023). We find that established metrics
like ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2019), and QAEval (Deutsch et al., 2021) do not
capture simplification and are inconsistent at cap-
turing perturbations in informativeness, coherence,
and faithfulness; SARI score (Xu et al., 2016), ex-
plicitly crafted for text simplification, is the only
automated score that displays sensitivity towards
simplification perturbations but not to other pertur-
bations. LLM prompt-based evaluations are effec-
tive for assessing informativeness, faithfulness, and
simplification, but not for coherence. Our analysis
suggests that a single overall score cannot simulta-
neously respond to all four criteria.

Our main contributions are as follows:
• We present APPLS, the first granular testbed

for analyzing evaluation metric performance for
plain language summarization; the testbed is cre-
ated by applying 11 perturbations along four di-
mensions to two scientific PLS datasets (§3, 4);

• We conduct a thorough analysis of 14 existing
evaluation metrics (including automated metrics,
lexical features, and LLM prompting methods),
demonstrating mixed effectiveness in evaluat-
ing informativeness, coherence, faithfulness, and
simplification (§5, 6);

• Based on our findings, we recommend an eval-
uation strategy for PLS that combines multiple
automated metrics able to capture differences
along all relevant dimensions.

2 Related Work
Limitations of Existing Metrics The primary
approach for evaluating plain language summaries
adopts evaluation metrics for summarization and
simplification, coupled with human evaluation
(Jain et al., 2021; Ondov et al., 2022). While
ROUGE (Lin, 2004) and BLEU (Sulem et al., 2018)
are frequently employed in PLS assessment, their
efficacy is limited due to the reliance on high-
quality reference summaries, which are often chal-
lenging to obtain for PLS or may not exist at all.
Further, these metrics struggle to accurately iden-

Dataset Version Word Sentence

CELLS Abstract (src.) 283±132 11±6

(n=6,311) PLS (tgt.) 178±74 7±3

Candidate summary 134±58 5±2

GPT-simplified 130±34 6±2

PLABA Abstract (src.) 240±95 10±4

(n=750) Adaptation (tgt.) 244±95 12±5

Table 1: Diagnostic datasets statistics (mean±std).

tify hallucinations, especially crucial for PLS in
the health domain to accurately inform health de-
cisions (Wallace et al., 2021; Pagnoni et al., 2021;
Wang et al., 2023). Though human evaluation of-
fers thorough assessment (Hardy et al., 2019), the
high costs and time needed impede scalability for
larger datasets. While recent progress in prompt-
based evaluation shows potential for assessing fac-
tuality (Luo et al., 2023) and summarization quality
(Gao et al., 2023), their efficacy for PLS is yet to be
validated. Our work aims to fill these gaps through
a systematic examination of these metrics within
the PLS context.

Robust Analysis with Synthetic Data Synthetic
data has been widely used in NLP to evaluate met-
rics, for tasks such as text generation (He et al.,
2023; Sai et al., 2021), natural language inference
(Chen and Eger, 2023; McCoy et al., 2019), ques-
tion answering (Ribeiro et al., 2019), and read-
ing comprehension (Sugawara et al., 2020). Yet,
no prior work has focused on the PLS task or in-
corporated simplification into their benchmarks.
Additionally, previous studies lack granular analy-
ses to capture nuanced relationships between text
changes and score changes. Our research endeav-
ors to bridge these gaps by crafting perturbations
that mirror real-world errors found in PLS.

3 PLS Evaluation Criteria

We identify four criteria that an effective PLS eval-
uation metric should be sensitive to based on both
abstractive summarization (Sai et al., 2022; Koto
et al., 2022) and plain language summarization
paradigms (Pitcher et al., 2022; Ondov et al., 2022;
Stoll et al., 2022; Jain et al., 2022). As in Gabriel
et al. (2021), we define sensitivity as being corre-
lated in the expected direction with the amount of
change in that criteria.

• Informativeness measures the extent to which
the plain language summary covers essential in-
formation from the source text (e.g., methods,
main findings) and incorporates relevant back-



Original text Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected more than 59 million people and killed more 
than one of them. The first step is an accurate assessment of the population prevalence of past infections… (Kline et al., 2021)

Criterion Perturbation Simulated real-
world situation

Perturbed text

Delete sentences Salient 
information 
missing

Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected more 
than 59 million people and killed more than one of them. The first step is an accurate assessment of 
the population prevalence of past infections…

Add out-of-
domain 
sentences

Out-of-domain 
hallucination 

In this paper we address the problem of aggregating the outputs of classiers solving different nlp 
tasks. Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected 
more than 59 million people and killed more than one of them…

Add in-domain 
sentences

In-domain 
hallucination

Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected more 
than 59 million people and killed more than one of them. This review synthesised the latest evidence 
on the reduction of antipsychotic doses for stable individuals with schizophrenia…

Add definitions Background 
explanation

Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected more 
than 59 million people and killed more than one of them. Coronaviruses are species in the genera of 
virus belonging to the subfamily Coronavirinae in the family Coronaviridae. Coronaviruses are 
enveloped viruses with a positive-sense RNA genome and with a nucleocapsid of helical symmetry. 
The genomic size of coronaviruses ranges from approximately 26 to 32 kilobases, extraordinarily 
large for an RNA virus. … 

Simplification Replace 
sentences

Paraphrasing 
with simple terms

SARS-CoV-2 is a virus that has infected over 59 million people globally and killed more than 1.39 
million. Scientists are trying to learn more about the virus in order to design interventions to slow and 
stop its spread. One of the first steps is understanding how many people have been infected in the 
past, which requires accurate population prevalence studies…

Coherence Reorder 
sentences

Poor writing flow The first step is an accurate assessment of the population prevalence of past infections. Worldwide, 
coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected more than 59 million 
people and killed more than one of them…

Number swap

Summarization 
erros

Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected more 
than 64 million people and killed more than one of them…

Entity swap Worldwide, canine adenovirus (CaV-2), a severe acute respiratory syndrome, has infected more than 
59 million people and killed more than one of them…

Synonym verb 
swap

Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, has infected more 
than 59 million people and stamped out more than one of them… 

Antonym verb 
swap

Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, infected more than 59 
million people and saved more than one of them…

Negate Worldwide, coronavirus 2 (SARS-CoV-2), a severe acute respiratory syndrome, hasn’t infected more 
than 59 million people and killed more than one of them. 
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Notations: removals/ additions/ modifications

Table 2: Example perturbations for criteria in APPLS. Original text comes from the CELLS (Guo et al., 2024).

ground information (Smith et al., 2021; Beck
et al., 1991).

• Simplification describes the degree to which
information is conveyed in a form that non-
expert audiences can readily understand. It is
distinct from informativeness because it focuses
on surface-level changes (e.g., shorter sentences)
but not other changes relevant to content (e.g.,
background explanation).

• Coherence describes the logical arrangement of
a plain language summary.

• Faithfulness denotes how well the summary
aligns factually with the source text.

4 Constructing the APPLS Testbed

To assess metric sensitivity, we develop perturba-
tions along each evaluation criteria dimension. We
implement our perturbations in two large-scale PLS
datasets, described in §4.1. We follow with a dis-
cussion of how perturbations are incorporated into
these datasets and our approach for managing per-
turbation magnitude (§4.2) and validating perturba-
tion quality (§4.3).

4.1 Diagnostic datasets

For our experiments, we use the CELLS (Guo et al.,
2024) and PLABA (Attal et al., 2023) datasets.
CELLS (Guo et al., 2024) is a parallel corpus of
scientific abstracts (source texts) and their corre-
sponding plain language summaries (target texts),
which are written by the abstract authors or by other
domain experts. CELLS aggregates papers from
12 biomedical journals, representing a diverse set
of topics and summaries, and serves as the primary
dataset in our testbed.

The PLABA (Attal et al., 2023) dataset includes
expert-modified biomedical abstracts, simplified to
improve understanding of health-related content.
PLABA includes sentence-level alignments, which
are useful for controlled perturbations. However,
we did not select PLABA as the primary dataset
due to its reliance on relatively contrived simplifi-
cations, which lack generalizability to other PLS
datasets; these modifications include rule-based
adjustments such as lexical simplification, shift-
ing from passive to active voice, and segmenting
long sentences. This results in high n-gram overlap
between sources and target summaries, which is un-
realistic and does not reflect PLS in the real world.



Therefore, PLABA serves as an auxiliary dataset
to CELLS, helping to address its limitations dis-
cussed in Sections §4.2 and §4.3. Full results using
PLABA as the diagnostic dataset are in App. H.

4.2 Applying perturbations to datasets

Illustrative examples of all perturbations are shown
in Table 2. For the APPLS testbed, we propose and
apply perturbations to a candidate summary, which
is an extractive summary constructed in the oracle
setting with additional lexical variation introduced
through round-trip translation (Ormazabal et al.,
2022) (Illustration in App. Figure 6).3 We do not
perturb the target text directly since the resulting
candidate summary would be overly similar to the
target, which would be unrealistic.

For CELLS, an extractive summary is created by
selecting the set of source sentences yielding the
highest ROUGE-L score when compared to the tar-
get summary, and this summary is then round-trip
translated through German to derive the candidate
summary. To identify the optimal extractive sum-
mary, we exhaustively evaluate all possible subsets
of sentences from the source document while pre-
serving their original order, ensuring the highest
ROUGE-L score is achieved.4 The PLABA dataset
already contains sentence alignments, with sources
and targets having similar lengths, so we produce
the candidate summary through round-trip transla-
tion of the target alone. Details are in App. B.

We apply all perturbations to these candidate
summaries as described below, where each per-
turbation introduces a change (e.g., add/swap sen-
tences) at some magnitude (e.g., replace 50% of
sentences). Due to the high costs associated with
some of our perturbations (e.g., LLM-based simpli-
fication), we restrict our testbed to the test splits of
our diagnostic datasets (stats in Table 1).5 To miti-
gate the effects of randomness, we use two random
seeds to produce all perturbations.

Informativeness
Delete sentences: To simulate the loss of relevant
information, we delete sentences until a single

3To achieve the necessary level of control for detecting the
sensitivity of automated scores to perturbation modifications,
we opt to use an extractive summary instead of a language
model to generate the candidate summaries.

4Why not use the extractive summary directly? Metrics
like SARI expect the candidate summary to contain simplified
text and exhibit degenerate behavior when used to evaluate
extractive summaries directly.

5The CELLS dataset contains 63k pairs; only the test split
with 6.3k pairs is used for APPLS construction.

sentence remains. The magnitude of deletion is
the ratio of remaining to original sentences.

Add sentences: We insert up to the same number
of sentences as in the candidate summary. To sim-
ulate out-of-domain hallucinations, we add sen-
tences from ACL papers (Bird et al., 2008). For
in-domain hallucinations, we add sentences from
Cochrane abstracts.6 The magnitude of addition
is the ratio of added to original sentences.

Add definitions: Background explanations are fun-
damental to PLS and involve adding external con-
tent like definitions or examples (Guo et al., 2024;
Srikanth and Li, 2021). To simulate these, we
add up to three definitions, the average number of
nouns explained in CELLS (Guo et al., 2024), i.e.,
100% perturbed adds three definitions.

Simplification
Replace sentences: For CELLS, we first generate
an LLM-simplified summary from the candidate
summary. We align sentences between the can-
didate summary and LLM-simplified summary
using the sentence alignment algorithm from Guo
et al. (2024). We perturb the text by replacing
random sentences from the candidate summary
with their corresponding simplifications until full
replacement is achieved. We use GPT-4 (Achiam
et al., 2023) to generate simplifications due to its
accessibility and demonstrated proficiency in text
simplification (Lu et al., 2023). To ensure that our
findings are not specific to the chosen model, we
also generate simplifications and conduct experi-
ments using GPT-3 (Brown et al., 2020), Llama2
(Touvron et al., 2023) and Claude.7 For PLABA,
we perturb text by replacing source sentences with
round-trip translated versions of their aligned sim-
plified targets (no LLM is used).

Coherence
Reorder sentences: We shuffle sentences in the can-
didate summary and quantify perturbation percent-
age in terms of the absolute difference in sentence
order between the original and shuffled candidate
summaries, e.g., a document with reversed sen-
tence order would be considered 100% perturbed.
Details are in App. A.

Faithfulness
Number swap: We identify numerals in the text and
randomly add a number from 1 to 5 to the original
numerical value.

6https://community.cochrane.org
7https://www.anthropic.com. Access date: 12/04/2023.

https://community.cochrane.org
https://www.anthropic.com


Verb swap: We introduce two perturbations by sub-
stituting verbs with either synonyms or antonyms.
An appropriate metric should be less sensitive to
synonyms but more sensitive to antonyms.

Entity swap: We replace entities using the KBIN
method (Wright et al., 2022), which replaces en-
tity spans with related concepts in the UMLS8

while maximizing NLI contradiction and mini-
mizing LM perplexity. This results in a fluent
sentence that varies from the original one.

Negate sentences: We negate sentences, and allow
up to one negation per sentence.

The perturbation magnitude of number, verb, and
entity swaps is determined by comparing the count
of altered spans to the total number of eligible spans
in the candidate summary. Full perturbation means
all eligible spans are swapped.

4.3 Human validation of candidate
summaries and LLM simplifications

We validate two design decisions of APPLS that
involve other models modifying text—round-trip
translation (RTT) for the extractive summary and
GPT-4-based simplification perturbations—by con-
ducting human evaluation. We sample 100 pairs
each of (i) extractive summaries (pre-RTT) paired
with candidate summaries (post-RTT) and (ii) GPT-
simplified summaries paired with candidate sum-
maries. Annotators were asked to assess content
alignment (defined as having comparable entities
and relations between entities) and rate informative-
ness, simplification, faithfulness, and coherence on
5-point Likert scales. Annotations were performed
by two independent annotators, both with doctor-
ates in the biological sciences, who were hired on
UpWork and compensated at 21 USD/hr. Each
annotator reviewed all sampled pairs for both eval-
uation tasks. Inter-rater agreement measured by
Cohen’s Kappa was 0.48, by Spearman rank corre-
lation was 0.58, implying moderate agreement for
both tasks (Artstein and Poesio, 2008). Details of
the annotation tasks are given in App. C.

Human annotators affirmed that RTT text (candi-
date summary) retained its informativeness (98%),
faithfulness (83%), coherence (100%), and sim-
plicity (96%) compared to the extractive summary.
For GPT-simplified sentences, evaluators rated its
informativeness (95%), faithfulness (95%), coher-
ence (98%), and simplicity (100%) compared to

8https://www.nlm.nih.gov/research/umls/

the candidate summary, with GPT-simplifications
consistently rated as more simple than the candi-
date summary while preserving semantic content.
In this context, we report the proportion of annota-
tions equal to or better than neutral for each crite-
rion. While the informativeness and faithfulness of
GPT-simplified text are assessed to be very good at
the passage level, the alignment algorithm used to
produce sentence alignments for the simplification
perturbation is imperfect and can introduce some
errors. To mitigate the impact of such misalign-
ment on the interpretation of results, we use the
PLABA dataset for auxiliary diagnostics because
it contains ground truth sentence-level alignments.

5 Evaluation Metrics

Our analysis spans 8 established evaluation met-
rics, including the 5 most commonly reported in
ACL’22 summarization/generation papers (empir-
ical results in App. D). We also assess 5 lexical
features associated with text simplification (§5.2)
and LLM-based evaluations (§5.3).

5.1 Existing automated evaluation metrics

We compute the following 8 automated metrics:
• Overlap-based metrics measure n-gram over-

lap. We report ROUGE (computed as the average
of ROUGE-1, ROUGE-2, and ROUGE-L) (Lin,
2004), BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), and SARI score (Xu
et al., 2016).

• Model-based metrics use pretrained models to
evaluate text quality. We adopt GPT-PPL, BERT-
Score (Zhang et al., 2019), and LENS (Maddela
et al., 2023).

• QA-based metrics capture content quality us-
ing a question-answering approach. We report
QAEval (Deutsch et al., 2021) scores here.

Details for all metrics are available in App. E. All
metrics assessed require target and generated texts;
while SARI and LENS additionally make use of
the source texts.

5.2 Lexical features

We also assess lexical features that have been
shown to be associated with text simplicity:
• Length: Shorter sentences are easier to under-

stand (Kauchak et al., 2017). We report both
sentence length and paragraph length.

• Familiarity: Simple text contains more common
words (Leroy et al., 2018). We compute the per-

https://www.nlm.nih.gov/research/umls/


Figure 2: Average scores of existing metrics for perturbed texts in the CELLS dataset. Scores are averaged in 10 bins
by perturbation percentage. Markers denote the defined criteria associated with that perturbation. Median reported
improvements in ACL’22 summarization and generation papers are ROUGE (+0.89), BLEU (+0.69), METEOR
(+0.50), SARI (+1.71), BERTScore (+0.55), and PPL (-2.06).

centage of text that is made up of the 1,000 most
common English words.9

• Specificity: Specificity quantifies the level of
detail in the text. We use Speciteller (Ko et al.,
2019) to compute the domain agnostic specificity
of terms in the paragraph.

• Phrase Transitions: Conjunctions (e.g., there-
fore) are important for flow and can assist with
comprehension (Kauchak et al., 2017). We re-
port the number of conjunctions.

• Function Words: Simple text contains more
verbs and fewer nouns (Mukherjee et al., 2017).
We report the number of verbs, nouns, adjectives,
adverbs, and numbers.

5.3 LLM prompt-based evaluations
Prompting LLMs for text generation evaluation has
been explored in recent work (Gao et al., 2023;
Luo et al., 2023). We adopt the prompt template
from Gao et al. (2023) to have GPT-4 (gpt-4-0613)
evaluate each candidate summary on the four PLS
criteria and to provide an overall quality score. All
scores range from 0 (worst) to 100 (best). We sup-
ply definitions for each criterion in the prompt. We
evaluate under three settings: (a) providing a sin-
gle criterion in the prompt and requesting a score
for that criterion; (b) providing all criteria in the
prompt and requesting scores for each criterion as
well as an overall score; and (c) the same setting as

9https://gist.github.com/deekayen/4148741

(b) but requiring explanations be generated along-
side the provided scores. Model configurations and
prompts are in App. G.

6 Analysis Results

Automated metric responses to perturbations are
in Figure 2, responses of lexical features are in
Figure 3, and prompt-based evaluation results are
shown in Figure 4. All trends are consistent across
two random seeds.

To contextualize metric performance in APPLS,
we survey metric changes reported in ACL’22
papers on text generation and summarization (full
results in App. D). Median reported improvements
for the most commonly reported metrics and SARI
are: ROUGE (+0.89), BLEU (+0.69), PPL (-2.06),
METEOR (+0.50), BERTScore (+0.55), and SARI
(+1.71), as shown in Figure 11.

Aside from SARI, current metrics exhibit short-
comings in evaluating simplicity. Metrics that
are sensitive to simplification should consistently
distinguish between more and less simplified text.
SARI is the only automated metric among those
we tested that is consistently sensitive to simplified
text. As shown in Figure 2, metrics that exhibit sen-
sitivity to simplification perturbations are GPT-PPL
(decreasing as more perturbations are introduced;
lower PPL is better) and SARI score. However, in
follow-up evaluations with PLABA (shown in App.

https://gist.github.com/deekayen/4148741


Figure 16), we see that GPT-PPL has undesirable
sensitivity to text length, as found in prior work
(Zhao et al., 2022).

ROUGE, BLEU, METEOR, BERTScore, and
QAEval decrease in response to the simplifica-
tion perturbation. While they show consistent re-
sponse relative to the degree of perturbation, they
are nonetheless not useful for assessing text sim-
plicity. When we report metric changes swapping
sources and targets (perturbing simplified texts to
increase complexity), these metrics also decrease
(App. Figure 13), suggesting that they are sensitive
to n-gram changes and not text simplicity. LENS
behaves erraticly with increasing simplification per-
turbation percentage, indicating that it is not a good
metric for text simplicity.

In addition to using GPT-4 (Achiam et al., 2023)
to produced simplified text for the simplification
perturbation, we also test three other LLMs:
GPT-3 (Brown et al., 2020), Llama 2 (Touvron
et al., 2023), and Claude.7 In Figure 5, we show
metric changes to the simplification perturbation
generated by all four models. Similar score
changes are observed for all models (except GPT-3
for SARI score, which is an outlier), demonstrating
that the simplicity perturbation in our testbed is
a reasonable and consistent measure of metric
response to text simplification, and that SARI is
generally able to distinguish between more and
less simplified text.

Metrics effectively capture informativeness,
coherence, and faithfulness, with room for
improvement. For informativeness, ROUGE,
BLEU, BERTScore, GPT-PPL, and QAEval are
sensitive to information deletion and irrelevant
additions, but decrease with the addition of back-
ground explanations through keyword definitions.
For coherence, BERTScore and LENS excel
in detecting perturbations, largely due to their
ability to assess between-sentence relationships.
BERTScore, GPT-PPL, and QAEval generally
perform well for faithfulness-related perturbations,
although GPT-PPL and BERTScore are somewhat
sensitive to synonym verb swaps instead of
antonym verb swaps, which is an undesirable
trait. QAEval is best at being unresponsive to
synonym verb swaps. Number swaps, however, re-
main undetected by all metrics. Results in Figure 2.

Lexical features are useful measures of text
simplicity. Figure 3 illustrates the response of
lexical features to degrees of text simplification in

0.0 0.2 0.4 0.6 0.8 1.0
Perturbed Percentage

0.5

0.0

0.5

1.0

Re
la

tiv
e 

Ch
an

ge

V.
N.
Adj.
Adv.
Num.
Para. len
Sent. len
Specificity
Conj.
Familarity

Figure 3: Relative change of each lexical feature with
respect to the unperturbed state (0%). Different markers
represent lexical feature categories.

CELLS, confirming trends observed in previous
studies (Kauchak et al., 2014; Leroy et al., 2018;
Kauchak et al., 2017; Mukherjee et al., 2017). As
simplification increases, sentence length decreases;
common words and verbs increase; and nouns,
adjectives, and term specificity decrease. Although
prior work emphasizes the importance of conjunc-
tions for comprehension (Kauchak et al., 2017),
our study reveals a reduction rather than increase
in conjunctions as texts become simpler. Overall,
these trends demonstrate that lexical features are
valuable indicators for text simplification. Results
on PLABA are similar, with an inverse trend for
paragraph length (App. Figure 12).

LLM prompt-based evaluations show promise
in distinguishing between PLS criteria. Prompt-
based scores demonstrate sensitivity to perturba-
tions in informativeness, faithfulness, and simpli-
fication, while showing less sensitivity to changes
in coherence (Figure 4). While providing a single
criterion, all criteria, and all criteria with an ex-
planation mostly yield similar results, trends for
simplification and some types of faithfulness per-
turbations are more clear and consistent when all
criteria are provided. This suggests that providing
all criteria and requesting all scores simultaneously
is most efficient and accurate.

Our results also indicate that additional explana-
tions are not essential for PLS evaluation (results
for settings b and c are similar). However, fur-
ther studies are required to better understand the
decision-making process of the LLM, assess the
validity of its explanations, and explore how the
quality of explanations impacts the score. Prompts
and detailed results are provided in App. G.



a. Single Criterion Provided

b. All Criteria Provided

c. All Criteria Provided, Explanation Needed

Figure 4: Prompt-based evaluation scores for four criteria - informativeness, simplification, coherence, and
faithfulness - along with an overall score. (a) providing a single criterion in the prompt and requesting a score
for that criterion; (b) providing all criteria in the prompt and requesting scores for each criterion as well as an
overall score; and (c) the same setting as (b) but with an additional requirement for explanations of the provided
scores. Notably, prompt-based scores demonstrate sensitivity to perturbations in informativeness, faithfulness, and
simplification, while showing less sensitivity to changes in coherence. The three prompt settings yield similar
results, with the exception that providing all criteria (setting b and c) is more sensitive to entity swaps compared to
providing a single criterion (setting a).

Figure 5: Variation in existing scores for simplification perturbations created by GPT-3, Llama2, and Claude on the
CELLS dataset.

7 Discussion & Conclusion

Recent advances point to the possibility of au-
tomated PLS; however, the multifaceted nature

of PLS makes evaluation challenging. We intro-
duce the first—to our knowledge—meta-evaluation
testbed, APPLS, for evaluating PLS metrics.

In APPLS, we apply controlled text perturba-



tions to existing PLS datasets based on several crite-
ria (informativeness, simplification, coherence, and
faithfulness). Using APPLS, we find that while
some metrics reasonably capture informativeness,
faithfulness, and coherence, SARI is uniquely sen-
sitive to simplification perturbations, but exhibits
insensitivity to other perturbations. Similar chal-
lenges are observed for QAEval, as no single met-
ric was consistently sensitive to all perturbations
across criteria. Therefore, an evaluation metric
suite should be considered based on all desired cri-
teria. From our results on APPLS, we identify
the following metrics for each criterion as most
promising from among those we tested: SARI for
simplicity, GPT-PPL for informativeness, LENS
for coherence, and QAEval for faithfulness. How-
ever, we warn that all of these automated metrics
have limitations as identified in our results. Fur-
ther research is necessary to identify more robust
metrics for a comprehensive evaluation of PLS.

The quickly improving performance of language
models on a variety of tasks has placed greater em-
phasis on extrinsic human evaluations (Clark et al.,
2021) evaluating models in real-world use cases, of-
ten with end-users. However, extrinsic evaluations
are time-intensive, difficult to implement correctly,
and costly, making them only viable for the most
promising models. Automated metrics offer a fast
and low-cost method for identifying improvement
trends even if they do not perfectly measure abso-
lute improvement, or improvement at the instance
level. Our selection of automated metrics grounded
in criteria from the health communication litera-
ture offer a viable first step in evaluating systems.
Initial automated evaluations can then be followed
by extrinsic evaluations to ensure comprehensive
analysis for real-world use.

Our APPLS testbed allows for extensible eval-
uation of PLS evaluation metrics. Although this
study focuses on the health domain, APPLS can be
adapted to other domains by changing the diagnos-
tic dataset. Depending on the domain, evaluation
criteria may need to be adjusted. For example, in le-
gal contexts, faithfulness might be prioritized over
informativeness, and additional criteria such as lan-
guage specificity (e.g., avoidance of vague termi-
nology) may be necessary. Using our perturbation
pipeline, APPLS can transform any PLS dataset
into a granular meta-evaluation testbed. New per-
turbations can be introduced, and new evaluation
metrics can also be incorporated easily into anal-
ysis. Our testbed lays the groundwork for further

advancements in automated PLS and PLS evalua-
tion, aiming to foster more impactful, accessible,
and equitable scientific communication.

Limitations

Our perturbations use synthetic data to simulate
real-world textual phenomena seen in PLS. Al-
though our approach is informed by prior work
and provides valuable insights into metric behavior,
further exploration of more sophisticated methods
to simulate changes in these criteria is warranted.
This is especially true for aligning sentences be-
tween scientific abstracts and plain language sum-
maries, as sentence-level alignment for scientific
summaries is still an open problem (Krishna et al.,
2023).

We also acknowledge that text quality may dete-
riorate with synthetic perturbations in a way that
affects multiple PLS criteria. However, by using
synthetic data, we are benefiting from the ability
to control our perturbations and extend our testbed
creation framework to any dataset. It is infeasi-
ble to find naturally occurring text with the same
controlled levels of each perturbation, with mini-
mal changes to other aspects. Our aim is not to
produce perfect outputs, but rather to establish a
robust baseline for evaluating the performance of
automated metrics for PLS evaluation. The results
of our analysis complement qualitative examina-
tions of model output conducted in other work,
which further suggests that automated text gener-
ation evaluation metrics may be limited in their
ability to assess generation performance of post-
GPT-3 LLMs (Goyal et al., 2022).

We have also focused our analysis on commonly
used metrics reported in prior work on simplifica-
tion, summarization, and generation. Investigating
the performance of metrics not included in this
work, as well as the generalizability of our meth-
ods to meta-evaluation for other generative NLP
tasks, is a future goal.
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Figure 6: Process for generating the candidate summary,
on which we apply all perturbation operations.

A Applying Perturbations

Figure 6 shows how the candidate summary is ex-
tracted from the original scientific abstract. An
extractive summary is identified based on high
ROUGE-L with the plain language target. The
extractive summary is passed through round-trip
translation via German to introduce lexical varia-
tion. The resulting candidate summary forms the
basis for our perturbations.

For coherence, we count the total sentence dis-
placement from their original positions, so for ex-
ample, swapping the first and last sentences would
result in a higher perturbation percentage compared
to swapping the first and second sentences. We
have published the perturbation code so that others
can review it and deploy the testbed on different
datasets.

B Round-trip translation for oracle
extractive summary

We use round-trip translation to introduce lexical
variation into our oracle extractive summaries. This
is important when computing metrics such as SARI,
which exhibit degenerate behavior when the hy-
pothesis is an extractive subset of the source. We
examine two languages for round-trip translation:
German and Russian. By employing the BLEU
score as a performance metric for the round-trip
generated text relative to the original source, we
find that the English-German-English (en-de-en)
translation sequence yields superior BLEU scores
(Figure 7), and therefore, select the en-de-en se-
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Figure 7: BLEU scores of round-trip translation
for English-German-English (en-de-en) and English-
Russian-English (en-ru-en) in CELLS oracle extractive
summaries.
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Figure 8: Comparison of BLEU scores between oracle
extractive summary (extracted) and candidate summary
(following roundtrip translation), using the scientific
abstract (src) as the reference for BLEU calculation.

quence to produce the candidate summary for our
testbed.

To scrutinize the introduced variation through
this extractive and round-trip translation pipeline,
we evaluate the BLEU score. As depicted in Fig-
ure 8, the BLEU score for the candidate summary
is lower than that of the oracle extractive summary.
This suggests the successful introduction of text
variations. Augmented by human evaluation results
in Table 3, with 152 out of 198 raters indicating
comparable simplification levels between the can-
didate summary and its extractive counterparts, we
conclude that our extractive and round-trip transla-
tion approach successfully introduces lexical vari-
ation in our oracle extractive summaries without
altering their simplicity level.

C Details of human evaluation

To validate the quality of candidate summaries and
GPT-simplified summaries, we randomly select



Type Unmatched Criteria Str. Agree Agree Neutral Disagree Str. Disagree

Round Trip Translation 1

Simplification 12 27 152 7 0
Informativeness 188 4 3 4 0

Faithfulness 155 6 4 20 14
Coherence 30 11 156 2 0

GPT Simplification 0

Simplification 67 32 1 0 0
Informativeness 37 37 21 5 0

Faithfulness 38 43 14 4 1
Coherence 10 47 41 2 0

Table 3: Counts of human evaluation ratings on each matched sentence for each criteria. For round trip translation,
there are 200 ratings; for GPT simplification, there are 100 ratings. Overall, we see that round trip translation
maintains strong faithfulness to the original, does not remove important information, and remains equally simple
and coherent (shown by a majority of neutral ratings for the simplification and coherence criteria). For GPT
simplification, we see that the simplification perturbation leads to substantially more simple text, while also
maintaining faithfulness and informativeness.

Figure 9: An example human evaluation task for assessing GPT-simplified summary quality.

100 summary pairs from each corpus for human
evaluation. Each pair in the candidate summary
annotation task consists of an oracle extractive
sentence and its respective en-de-en round-trip-
translation sentence. Similarly, each pair in the
GPT-simplified summary annotation task contains
a chunk of the candidate summary along with its
corresponding GPT-simplified chunk.

Each pair is reviewed by two independent an-
notators. Annotators were hired through UpWork
and have Bachelors and Doctorate degrees in the
biological sciences. In the evaluation, the text pairs

are labeled as Text A and Text B, without any indi-
cation that either text is generated. The annotators
are first asked to assess whether the content of Text
A matches the content of Text B, where a match
is defined as containing the same relation tuples.
If the texts match, the annotators further evaluate
Text B in relation to Text A, assessing whether
Text B encapsulates key points (informativeness),
is more comprehensible (simplification), maintains
factual integrity (faithfulness), and exhibits a well-
structured layout (coherence). All facets are as-
sessed using a 1-5 Likert scale (1-strongly disagree,
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Figure 11: Distributions of reported metric improve-
ments over baseline (absolute value) reported in ACL’22
summarization and generation long papers.

5-strongly agree). Representative questions can be
found in Figure 9. This research activity is exempt
from institutional IRB review.

D Empirical Study of Evaluation Metrics
Reported in ACL 2022 Publications

Our study undertakes a comprehensive analysis of
scores reported in the long papers of ACL 2022
to identify the most prevalently reported metrics
in summarization and simplification tasks. We pri-
marily concentrate on tasks related to generation,
summarization, and simplification. Our inclusion
criteria are: 1) long papers with ‘generat,’ ‘sum-
mar,’ or ‘simpl’ in the title; and 2) papers that report
scores for both the current model and at least one
baseline model in the main text. We exclude scores
from ablation studies.

Of the 601 long papers accepted to ACL 2022,
109 satisfy our inclusion criteria, which we cate-
gorize into 31 summarization and 78 generation

papers, with no qualified papers related to sim-
plification tasks. Considering the significance of
simplification in PLS, we expanded our search to
all ACL 2022 papers, including long, short, system
demonstration, and findings papers. This led to the
identification of 2 out of 22 papers with ‘simpl’ in
the title that reported SARI scores. As illustrated
in Figure 10, the five most frequently reported au-
tomated evaluation metrics are ROUGE, BLEU,
GPT-PPL, METEOR, and BERTScore.

This investigation provides insight into the cur-
rent adoption of evaluation metrics in natural lan-
guage generation, summarization, and simplifica-
tion tasks. We observe that a majority of papers
employ the same metrics across these tasks, and the
reported improvements are often relatively small
compared to the overall ranges for each measure.
We also underscore the difficulty of interpreting
changes in some of these metrics, especially model-
based metrics, which lack grounding to lexical dif-
ferences in text such as n-gram overlap.

By presenting the reported score differences
from ACL papers, we hope to contextualize the
metric changes observed through testing in our
meta-evaluation testbed. We report the median of
BERTScore values and deltas as reported in these
publications, without considering the usage of dif-
ferent models or settings.

E Details on existing automated
evaluation metrics

Overlap-based metrics measure n-gram overlaps,
and are popular due to their ease of use.
• ROUGE10 (Lin, 2004) measures n-gram over-

lap between generated and reference summaries,
focusing on recall. We report the average of
ROUGE-1, ROUGE-2, and ROUGE-L.

• BLEU10 (Papineni et al., 2002) computes n-
gram precision of generated text against refer-
ence texts, including a brevity penalty.

• METEOR10 (Banerjee and Lavie, 2005) em-
ploys a relaxed matching criterion based on the
F-measure, and addresses the exact match restric-
tions and recall consideration of BLEU.

• SARI11 (Xu et al., 2016) is specifically designed
to evaluate text simplification tasks. The score
weights deleted, added, and kept n-grams be-
tween the source, generated, and target texts.
10Implementation: Fabbri et al. (2021) BERTScore

hash code: bert-base-uncased_L8_no-idf_version =
0.3.12(hug_trans=4.27.3).

11Implementation: Alva-Manchego et al. (2019)
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Figure 12: Relative change of each lexical feature with
respect to perturbations in the PLABA dataset. Different
markers represent lexical feature categories.

Model-based metrics use pretrained models to
evaluate text quality.
• GPT-PPL,12 usually computed with GPT-2,

measures fluency and coherence by calculating
the average log probability assigned to each to-
ken by the GPT model, with lower scores indi-
cating higher fluency and coherence.

• BERTScore10 (Zhang et al., 2019) quantifies
the similarity between candidate summaries and
targets using contextualized embeddings from
the BERT model, computing the F1-score be-
tween embeddings to capture semantic similarity
beyond n-gram matching.

• LENS (Maddela et al., 2023) employs an adap-
tive ranking loss to focus on targets closer to the
system output in edit operations (e.g., splitting,
paraphrasing, deletion).

QA-based metrics capture content quality using a
question-answering approach.
• QAEval (Deutsch et al., 2021) generates

question-answer pairs from the target text, then
uses a learned QA model to answer these ques-
tions using the generated text. The score is com-
puted as the proportion of questions answered
correctly. We report QAEval LERC scores.

F Additional experiments for existing
metrics

To illustrate that existing metrics are not sensitive
to text simplicity but rather to length and n-gram
overlap, we present metric scores computed when
swapping source and target for simplification per-
turbations (Figure 13). When target text is used
as reference, we start with the candidate summary
and increase perturbation percentage by swapping
in simpler text, going from more complex to more
simple text. When source text is used as reference,

12https://huggingface.co/transformers/v3.2.0/perplexity.html

we reverse the original source and target, starting
with simple text and swapping in sentences from
the candidate summary, thereby moving from more
simple to more complex text. A metric sensitive
to text simplification should move in opposite di-
rections in these two settings as perturbation per-
centage increases. However, these metric scores
uniformly decrease under both settings, regardless
of the reference, demonstrating that these metrics
are not responsive to simplification but more so to
text length and n-gram overlap. We do not report
performance of BERTScore and QAEval under this
setting due to the higher cost of computing these
model based metrics.

G LLM Prompt-Based Evaluation

We use GPT-4 for LLM evaluation. The generation
process is configured with a temperature parameter
of 0, a maximum length of 150, and a penalty value
of 0. For each input, the top-ranked text is selected
as the GPT-simplified output. Example prompts
used for evaluation are provided in Figure 14.

H Additional perturbation results for
PLABA

We present full perturbation results on PLABA (At-
tal et al., 2023) in Figure 16. Trends for many per-
turbations are in the same direction as in CELLS.
While many metrics now show a desirable reversed
trend to simplification (increasing), we point out
that this is inconsistent performance relative to
CELLS and is due to the high n-gram overlap be-
tween the candidate summaries and targets in this
case (we perturb by replacing source sentences with
round-trip translated target sentences to form the
candidate summary, which only introduces minor
lexical variation). Adding text, especially defini-
tions, dramatically decreases many of these metrics
due to the similar lengths of source and target texts
in PLABA, again pointing to the n-gram and length
sensitivities of most of these metrics.

The impact of simplification perturbations on lex-
ical features in the PLABA dataset is shown in Fig-
ure 12. Most trends are similar to CELLS, though
paragraph length increases with higher perturba-
tion percentage. In PLABA’s target construction
scheme, the target simplified texts length (244) are
similar to the source abstracts (240).

https://huggingface.co/transformers/v3.2.0/perplexity.html


Figure 13: Average scores of ROUGE, BLEU, METEOR, and SARI scores calculated using either the source text
(complex) or target text (simple) as reference for simplification perturbations on the CELLS dataset. A metric
sensitive to text simplicity should move in opposing directions under these two settings. However, ROUGE, BLEU,
and METEOR decrease uniformly in both settings, suggesting that they are not sensitive to text simplicity.

a. Single criterion provided 
Imagine you are a human annotator now. You will evaluate the quality of a generated plain language summary for a scientific literature abstract. Please follow these 
steps:

                1. Read the scientific abstract provided.

                2. Read the generated plain language summary.

                3. Compared to the scientific abstract, rate the generated summary on the following criteria: {one of the criteria}

                4. Assign a score for the generated summary, rating on a scale from 0 (worst) to 100 (best).

                5. You do not need to explain the reason. Only provide the score.


Scientific abstract:{abstract}; 

Generated plain language summary:{pls_gen};

Score:


b. All criteria provided 
Imagine you are a human annotator now. You will evaluate the quality of a generated plain language summary for a scientific literature abstract. Please follow these 
steps:

                1. Read the scientific abstract provided.

                2. Read the generated plain language summary.

                3. Compared to the scientific abstract, rate the generated summary on the following criteria: {all criteria}

                4. Assign a score for the generated summary, rating on a scale from 0 (worst) to 100 (best).

                5. You do not need to explain the reason. Only provide the score.


Scientific abstract:{abstract}; 

Generated plain language summary:{pls_gen};

Score:


c. All criteria provided, explanation needed 
Imagine you are a human annotator now. You will evaluate the quality of a generated plain language summary for a scientific literature abstract. Please follow these 
steps:

                1. Read the scientific abstract provided.

                2. Read the generated plain language summary.

                3. Compared to the scientific abstract, rate the generated summary on the following criteria: {all criteria}

                4. Assign a score for the generated summary, rating on a scale from 0 (worst) to 100 (best).

                5. Explain the reason for the score. 

Scientific abstract:{abstract}; 

Generated plain language summary:{pls_gen};

Score:

Criteria: 

-Informativeness: measures the extent to which a plain language summary encapsulates essential elements such as methodologies, primary findings, and 
conclusions from the original scientific text. An informative summary efficiently conveys the central message of the source material, avoiding the exclusion of 
crucial details or the introduction of hallucinations (i.e., information present in the summary but absent in the scientific text), both of which could impair reader 
comprehension.

-Simplification: encompasses the rendering of information into a form that non-expert audiences can readily interpret and understand. This criterion prioritizes the 
use of simple vocabulary, casual language, and concise sentences that minimize excessive jargon and technical terminology unfamiliar to a lay audience.

-Coherence: pertains to the logical arrangement of a plain language summary. A coherent summary guarantees an unambiguous and steady progression of ideas, 
offering information in a well-ordered fashion that facilitates ease of comprehension for the reader. We conjecture that the original sentence order reflects optimal 
coherence.

-Faithfulness: denotes the extent to which the plain language summary aligns factually with the source scientific text, in terms of its findings, methods, and claims. 
A faithful summary should not substitute information or introduce errors, misconceptions, and inaccuracies, which can misguide the reader or misrepresent the 
original author's intent. Faithfulness emphasizes the factual alignment of the summary with the source text, while informativeness gauges the completeness and 
efficiency of the summary in conveying key elements.

Figure 14: Prompts used for GPT-4 based evaluation: (a): single criterion provided; (b) all criteria provided; and (c)
all criteria provided and explanation needed.



a. Reference-Free

b. Reference-Provided

Figure 15: Prompt-based evaluation scores for four criteria - informativeness, simplification, coherence, and
faithfulness - along with an overall score. (a): Reference free; (b) Reference provided.

Figure 16: Average scores of existing metrics for perturbed texts in the PLABA dataset. Scores are averaged in 10
bins by perturbation percentage. Markers denote perturbations associated with our four defined criteria.
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